I am pretty new to polymake and have been wanting to understand the combinatorial structure of some regular subdivision I am studying for my PhD.
It is a subdivision of the vertices of the (twice dilated) second hypersimplex as the one studied by De Loera, Sturmfels, and Thomas in http://link.springer.com/10.1007/BF01299745, to which I have added as many additionnal points as the dimension of the ambient space (all contained in the hyperplane \( \sum_{i=1}^n x_i = 4 \)).
The vertices of the second hypersimplex are indexed from 0 to 14 and the last 6 vertices are indexed from 15 to 20.
I have entered the following commands in Polymake (v4.11):
Code: Select all
$M = new Matrix<Rational>([[2,2,0,0,0,0],[0,2,2,0,0,0],[0,0,2,2,0,0],[0,0,0,2,2,0],[0,0,0,0,2,2],[2,0,0,0,0,2],[2,0,2,0,0,0],[0,2,0,2,0,0],[0,0,2,0,2,0],[0,0,0,2,0,2],[2,0,0,0,2,0],[0,2,0,0,0,2],[2,0,0,2,0,0],[0,2,0,0,2,0],[0,0,2,0,0,2],[3/2,1/2,1/2,1/2,1/2,1/2],[1/2,3/2,1/2,1/2,1/2,1/2],[1/2,1/2,3/2,1/2,1/2,1/2],[1/2,1/2,1/2,3/2,1/2,1/2],[1/2,1/2,1/2,1/2,3/2,1/2],[1/2,1/2,1/2,1/2,1/2,3/2]]);
Code: Select all
$w = new Vector<Rational>([6,6,6,6,6,6,3,3,3,3,3,3,2,2,2,10,10,10,10,10,10]);
Code: Select all
$S = new fan::SubdivisionOfPoints(POINTS=>$M,WEIGHTS=>$w);
Code: Select all
print $S->MAXIMAL_CELLS;
Code: Select all
{6 7 12 13 14 16 17}
{1 6 7 13 14 16 17}
{9 10 12 13 14 19 20}
{6 8 10 12 13 14}
{0 5 6 10 11 12}
{3 7 8 12 13 18}
{6 7 8 12 13 17}
{5 6 10 11 12 14}
{6 10 11 12 13 14}
{1 6 7 8 13 17}
{0 6 10 11 12 13}
{5 10 11 12 14 20}
{4 5 9 11 14 20}
{5 9 10 12 14 20}
{4 5 9 10 14 20}
{3 4 8 10 13 19}
{3 4 8 9 10 19}
{7 8 12 13 14 17 18}
{7 9 11 12 13 14}
{1 2 6 8 14 17}
{2 3 7 8 12 18}
{8 9 12 13 14 18 19}
{3 8 9 10 12 19}
{3 8 9 12 13 18 19}
{9 11 12 13 14 20}
{10 11 12 13 14 20}
{4 9 11 13 14 20}
{5 9 11 12 14 20}
{4 10 11 13 14 20}
{4 5 10 11 14 20}
{9 10 11 12 13 20}
{4 9 10 11 13 20}
{4 5 9 10 11 20}
{5 9 10 11 12 20}
{3 4 8 9 13 19}
{4 8 9 13 14 19}
{3 8 10 12 13 19}
{4 9 10 13 14 19 20}
{4 8 10 13 14 19}
{3 9 10 12 13 19}
{3 4 9 10 13 19}
{8 10 12 13 14 19}
{8 9 10 12 14 19}
{4 8 9 10 14 19}
{2 7 8 9 14 18}
{7 8 9 13 14 18}
{3 7 8 9 13 18}
{2 3 7 8 9 18}
{2 7 9 12 14 18}
{3 7 9 12 13 18}
{2 3 8 9 12 18}
{2 8 9 12 14 18}
{7 9 12 13 14 18}
{2 3 7 9 12 18}
{1 2 7 8 14 17}
{1 7 8 13 14 17}
{1 2 6 7 8 17}
{2 6 7 8 12 17}
{2 6 7 12 14 17}
{1 2 6 7 14 17}
{1 6 8 13 14 17}
{6 8 12 13 14 17}
{2 6 8 12 14 17}
{2 7 8 12 14 17 18}
{1 7 11 13 14 16}
{0 1 6 7 13 16}
{0 6 7 12 13 16}
{0 1 7 11 13 16}
{6 7 11 12 14 16}
{0 6 7 11 12 16}
{0 1 6 7 11 16}
{1 6 7 11 14 16}
{0 1 6 11 13 16}
{1 6 11 13 14 16}
{0 7 11 12 13 16}
{6 11 12 13 14 16}
{0 6 11 12 13 16}
{7 11 12 13 14 16}
Can someone enlighten me?
Best,
Mathieu V.
P.S.: I have tried the subdivision without my additional vertices and it outputed the mathematically expected result.